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C O U P L I N G  E F F E C T S  IN B E N D I N G  P R O B L E M S  

FOR B E A M S  OF A S H A P E  M E M O R Y  ALLOY 

A.  A .  M o v e h a n  UDC 539.4 

Coupling effects of boundary-value problems that arise for shape-memory alloys whose phase 
compositions depend on the acting stresses and whose elastic moduli change with variation in 
the fraction of martensite are studied. Algorithms and results of solution of a number of beam 
bending problems are given. It is established that in coupled problems, the changes in the stress- 
strain state upon cooling proceed more smoothly than in uncoupled problems. This is due to the 
propagation of the front of the beginning of the transformation over the cross section. Overload 
of the outer layers of the beam and unloading of the inner layers of the beam are found to be 
related to the propagation of the front of completion of the transformation. 

The unique mechanical properties of shape-memory alloys [1-3] are described using a micromechanical 
system of governing equations [4-6]. An analytical method for solution of uncoupled boundary-value problems 
for alloys whose phase composition does not depend on the acting stresses and whose elastic moduli are 
constant was proposed in [7, 8]. However, these conditions are not met for widely used shape-memory alloys 
such as titanium nickelide [9] and copper-based alloys [10, 11]. For these materials, the martensite portion 
cannot be calculated before solution of the problem, which thus becomes coupled. In the present paper, we 
study effects of this type of coupling using beam bending problems as an example. 

1. Formula t ion  of  t he  P rob lem.  The one-dimensional constitutive equations for shape-memory 
alloys [4-6] are of the form 

e =~l  +e2, e l = a / E ,  E =  Elq+ Ez (1 -q ) ;  (1.1) 

dz 2 = (B + a0e 2) dq; (1.2) 

q = sin ( 2  Ml + klaI - T ) B =  2 
M1 --- ~14f~ ' ~ c0a (1.3) 

for 

and 

for 

M2 + klal < T < MI + klal, k sign(a)da > dT (1.4) 

(2 T _klal 2 a0 * q = cos -~AI .~  '~ B = Acoa(q)]4>o + (1 - A) exp(a0ql) - 1 , ,2 - - '  5 (1.5) 

Aa + klal < T < A2 + klal, ksign(a)da < dT. (1.6) 

Here q is the volumetric portion of martensite, ~, e 1, and ~2 are the total, elastic, and phase strains 
(thermal strain and the volume effect of the phase transformation are ignored in bending problems), T is 
the temperature, a is the longitudinal normal stress (the transverse tangential stresses in the constitutive 
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equations are ignored), Ml, M2 and Al, A2 are the temperatures at the beginning and end of the direct and 
reverse thermoelastic transformation in stress-free material, co, a0, ~, and k are parameters of the material, 
El and E2 are Young's moduli for the maxtensite and austenite states, (1.4) are the conditions of the direct 
transformation (q > 0), (1.6) are the conditions of the reverse transformation (~ < 0), and the quantity 
a(q)lq>0 at the point in the reverse-transformation region that corresponds to the fraction of the maxtensite 
phase q is the stress at the point of the previous region of direct transformation with the same value of q. 
Equation (1.2) for the phase strain in each stage of the direct and reverse transformations is integrated subject 
to the initial condition e21q=ql = e*, where qx and ~* are the values of q and e 2 attained at the last point of 
the previous stage. 

The constitutive equations are supplemented with the relation of the hypothesis of plane sections 

el + ~2 = ~(T ,x ) z  (1.7) 

and the equilibrium equation 

h 

2 / b(z)az dz = M. (1.s) 
, J  

0 

Here fl(T, x) is the curvature of the beam, x and z axe the coordinates along the neutral axis and the height 
of the section, b(z) and h are the width and height of the section, and M is the bending moment. Relations 
(1.1)-(1.8) are sufficient to find the dependence of the curvature fl on the moment M. To determine the 
deflection W in the case of small deflections, we use the relation 

a2W 
/3=-  Oz 2 (1.9) 

and the corresponding boundaxy conditions. 
If we set k = 0 in (1.3)-(1.6), the problem becomes uncoupled. In this case, q does not depend on 

z at a uniform temperature  distribution over the section. From (1.1), (1.2), and (1.7) it follows that both 
phase strains and stresses are proportional to z. Therefore, in uncoupled problems, the section stresses are 
uniquely determined by the bending moment and do not depend on the temperature and phase composition; 
for identical moments, the stresses are the same in an elastic beam and a beam of a shape-memory alloy. 

2. S t ress  R e l a x a t i o n  in a B e a m  wi th  a F i x e d  C u r v a t u r e .  We assume that  a beam in the 
austenite state is imparted a curvature/3, after which it begins to cool in the temperature  range of the direct 
maxtensitic transformation a t /3  = coast (as if the beam is "wound" on a round drum). Because of the direct 
transformation, phase deformations will propagate toward the acting stress, which relaxes as a result. It is 
easy to see that, according to (1.4), the direct transformation begins at 

T = T O = kE2/3h + M1. (2.1) 

At M1 < T < T ~ the beam section consists of an elastic core, 0 < Izl < zo = (T - M1)/(kE2/3), and a 
transformation zone, z0 < Izl ~< h. To obtain the solution in the transformation zone, the stress a is expressed 
in terms of the elastic strain by means of (1.1), which, in turn, is expressed in terms of the curvature and 
phase strain by means of (1.7): 

a = E(q)(t3z - r (2.2) 

Substituting (2.2) into (1.2) gives a differential equation for the phase strain: 

dg2 - ao ) ~2 2 
dq + (3  coE(q) = 5coE(q)~z.  

The solution of Eq. (2.3) is of the form 

~2 = 13z[1 - f(q) + aof(q)F(q)]. 

(2.3) 

(2.4) 
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Here 

[ ( 2 )  .~3E2q2] E1 ~ .  f (q)  = exp a0 - ~ c0E2 q + ~ ; A = 1 - E2' 

exp(3 ,2 
X 

F(q) = - r = f exp dr $'Y a 0 ) [ r  r  $7q)]; '7 = \ ' - '~ - - ]  ; 0 

In accordance with (2.2) and (2.4), we have the following relation for a: 

a = E2(1 - Aq)~zf(q)[1 - aoF(q)] (2.5) 

Here the quanti ty q is not known in advance in coupled problems. Relations (1.3) and (2.5) are a 
system of equations that allows one to obtain the dependence of both quantities on the temperature T and 
the coordinate z. Substituting (2.5) into (1.3) gives a transcendental equation for q, which is solved for chosen 
values of z, using, e.g., the method of dividing in half. 

The solution obtained is valid for z0 < z < h a~ long as the extreme fiber stress a(h) obtained from 
this solution satisfies the inequality T - k]a(h)] >>. M2, which indicates that the transformation has not been 
completed yet. Otherwise, this solution is valid only for z0 < Izl < Zl, where the coordinate Zl of the front at 
the end of the transformation is determined by the formula 

T - M 2  
Zl = kEl~f(1)ll _ aoF(1)l" 

For zl < Izl -< h, we have s 2 =/3z[1 - f(1) + aof(1)F(1)] and o" = Ex~zf(1)[1 - a0F(1)]. According to the 
relation obtained, the stress in the zone of completion of the transformation is proportional to z even in the 
coupled problem, but the proportionality coefficient is different from that in the elastic region. 

The bending moment necessary for maintenance of a given curvature fl = const is obtained for a 
rectangular beam from the formula 

M = 2b[~ --5-~ 4" E1/3f(1)(l- aoF(1)) 

The integral in (2.6) is determined numerically. 

h 3 _ z l  3 Zl 

zo 

Figure 1 gives curves of the dimensionless bending moment p = 3M/(2bh2E2) versus the relative 
temperature t = (M1 - T ) / ( M I  -/142) obtained using this formula for ti tanium nickelide with E~ = 28,000 MPa, 
E2 = 84,000 MPa, a0 = 0.718, k = 0.2~ and co = 2.43.10 -4 1/MPa. Curves 1 and 2 correspond 
to/3h = 0.0005 and 0.002. Evidently, the bending moment necessary for maintenance of a given curvature 
under cooling in the temperature range of the direct martensitic transformation decreases to zero at a certain 
temperature T = T*. 

One can prove that for an arbitrary continuous dependence of Young's modulus on q, the quantity T*, 
if it exists, does not depend on the given curvature, but is determined only by the material constants. Indeed, 
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following (2.3), we represent the solution of the equation for the phase strain as 

~2 = A(q)~z, 

where 

(2.7) 

2 q 2coE(~)]d~dr" A ( q ) = : c o f  E ( r ) e x p { f [ a o - :  (2.8) 
l J 

0 r 

The quantity q in (2.7) and (2.8), generally speaking, depends on z via a according to (1.3). 
Since the integrand of the outer  integral of (2.8) is continuous and positive, A(q) is a monotonically 

increasing, continuous function of q. Consequently, if the equation 

A(q) = 1 (2.9) 

has a root q* on the segment [0, 1], this root is single and depends only on the material  constants. For q = q*, 
according to (2.7) and (2.9), the phase strain at each point of the section is equal to the given total strain; 
hence, the elastic strain and the acting stresses are equal to zero: 

e l (q . , z )  = 0, or(q*, z) = 0, (2.10) 

that  is, for q = q*, the stresses completely relax. The corresponding value of T* can be expressed in terms of 
q* using relations (1.3) in which one should set a = 0 by virtue of (2.10): 

t* = (2/r)arcsin(q*) ,  T" = M1 - (/14"1 - M2)t'. (2.11) 

For the given case of linear variation of the elastic modulus (1.1), Eq. (2.9) has the form F(q) = 1/ao and its 
solution for material parameters  typical of t i tanium nickelide is q* = 0.288 and t* = 0.186. 

It should be noted tha t ,  according to (2.8), (2.9), and (2.11), the quantit ies q*, t*, and T* do not 
depend on the material parameter  k, which determines the effect of the acting stress on q. Consequently, the 
stress relaxation in an alloy whose phase composition does not depend on the acting stress occurs at the same 
temperature as in alloys such as t i tan ium nickelide, for which such a dependence exists. 

At T = T*, the beam will remain curvilinear with the given constant curvature in the absence of 
external loads. Further cooling of a beam whose curvature is fixed leads to negative moments  M with increasing 
absolute values (i.e., it is necessary to apply a moment  of opposite sign lest the  curvature increase). Such 
behavior is a co-sequence of oriented transformation [1, 8]. 

The same problem in an uncoupled formulation is easily solved by the method  proposed in [7, 8]. 
Applying a Laplace t ransform to the elastic solution M = E~J (J = 2bh3/3), replacing the modulus E by 
the corresponding operator [8], and performing an inverse Laplace transform, we obtain 

2 [1 2c0E ( e x p  [(a0 - 1 ) ]  

From this solution for/~h = 0.002, curve 3 in Fig 1 is constructed for E = E1 and curve 4 for E = E2. As 
can be seen, the solutions of the coupled and uncoupled problems differ greatly. The  variability of the elastic 
modulus has a significant effect on T*. The  portion of the martensite phase and the relative temperature  at 
which the moment  vanishes are determined from the formulas 

, 1 ( 3<;o '~ (2.12) 
q = ao - 2coE/3 In \2coE] 

and (2.11). We have t* = 0.3208 for E = El and t* = 0.1466 for E = E2. According to the solutions obtained, 

in the uncoupled problem, stress relaxation proceeds much more abruptly than in the coupled problem, where 

deceleration occurs as a result of motion of the transformation front. 
Figure 2 shows curves obtained in solution of the coupled problem of the distributions of the 

dimensionless stresses s = o'/E2 over the beam section. The dimensionless coordinate ~ = z/h is plotted 
on the ordinate. Curve 1 corresponds to t = -0 .8  (the transformation in the extreme fibers of the beam 
begins at t = -0.84),  and curves 2-6 correspond to t = -0 .6 ,  -0 .4 ,  -0 .2 ,  0, and 1, respectively. Evidently, 
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the stress distribution over the section differs greatly from the linear distribution obtained in solution of the 
uncoupled problem. Because of the phase transition in the given case, as in the elastoplastic problem, the 
stress distribution over the beam section becomes more uniform compared with the distribution in the elastic 
problem. At T > T*, the stresses on the convex side of the beam become compressive, and on the concave 
side of the beam, they are tensile. According to the results obtained, at negative and small positive values of 
t, the distribution of the martensite phase over the beam section differs from the uniform distribution typical 
of the solution of the coupled problem. 

It should be noted that the front of completion of the transformation propagates over the beam section 
under cooling at a much higher velocity than the front of the beginning of the direct transformation. At 
flh = 0.001, the transformation in the extreme fibers is completed at t -- 0.9658, and the front of completion of 
the transformation traverses the entire beam section as t changes from 0.9658 to 1. In general, the propagation 
of the fronts of beginning and completion of the transformation is a result of solution of the coupled problem. 
In the uncoupled problem with a uniform temperature distribution over the section, direct transformation 
begins simultaneously at all points of the section at t = 0 and is completed at t = 1. 

3. F o r m u l a t i o n  of  t h e  B e n d i n g  P r o b l e m  in I n c r e m e n t s .  In what follows, we consider problems 
in which the curvature/~ is not fixed but is found by solution of the problem. In this case, it is not possible to 
obtain a solution in quadratures, and the problem has to be solved by steps. To obtain equations in increments, 
one should differentiate relation (1.7) and, on the right side of the resulting equation, replace de 1 and de 2 
using (1.1) and (1.2), respectively: 

zdfl = da [ a dE (B + a0e2)] dq. (3.1) 
E ~ dq 

According to (1.3) and (1.5), we have 

dq = ~o[k sign ( a ) da - dT] ~/1 - q2 , (3.2) 

where ~o = ~r/(2(M1 - M2)) for the direct transformation and ~o = r/(2(A1 - A2)) for the reverse 
transformation. Substituting (3.2) into (3.1) and solving this equation for da, we obtain 

da = 1/ E + kC sign (tr) ' r  x B + a ~  2 E 2 dq a /  ~ r l - 
q2. (3.3 ) 

Relations (3.3) are valid in the transformation zone. In the elastic region on the right side of the first equation 
of (3.3), it is ffecessary to set r = 0. 

Using (1.8) and (3.3), for the differential of the bending moment d M  we have (in a rectangular bean-.) 

h 

= 2 b / d a z  dz = 2b(fl d~ + f2 dT), (3.4) dM 
o 

where 

z 2 dz 1 3 ] Cz dz 
f l  = 1 /E+kd2s ign(a)  + 3 E2z~ f 2 = j 1 / E + k d 2 s i g n ( a ) .  

zo zo 

4. R e l a x a t i o n  of  t h e  E x t r e m e  Layers of  t h e  B e a m  in t h e  Di rec t  T r a n s f o r m a t i o n  unde r  
P u r e  Bend ing .  Let the bending moment be fixed: dM = 0, and the temperature changes via the temperature 
interval of the direct or reverse transformation. In this case, from (3.4) we obtain the following relation for 
the curvature increment: 

d~ = - ( f l / f 2 ) d T .  (4.1) 

The procedure for determining' the curvature ~ that corresponds to a given (fixed) value of the bending 
moment and cooling from the completely austenite state to a given temperature reduces to the following. 
The curvature ~0 in the elastic problem and the corresponding stress distribution in the section a ~ = E2/~~ 
are determined. The temperature of the beginning of the transformation T O is obtained from formula (2.1). 
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The quantities T ~ E ~ and a are used as initial values in step-by-step solution. The temperature increases 
with a chosen step dT, and the corresponding values of dE and da are determined using (3.3) and (4.1). The 
calculated increments are added to the values of E and a determined in the previous step. After that, the 
quantity q for the chosen points of the section is found from (1.3), the elastic strain is found from (1.1), and 
the phase strain is obtained in the form e2 = Ez - e 1. 

Using the above algorithm, we solved the problem of direct transformation of a beam of titanium 
nickelide under pure bending. It is established that at T > M1, the stress distribution over the beam section 
is similar to that given in Fig. 2, which corresponds to the problem of stress relaxation in a beam of given 
curvature. On subsequent cooling to temperatures T < M1, the pattern changes suddenly. The central part of 
the section relaxes so that the stresses in the region from the neutral curve to the relative height of the section, 
which is approximately equal to ~ ~ 0.5, are close to zero. At the same time, the extreme fibers of the beam 
are overstressed [for a relative value of the fixed bending moment p -- 3M/(2bh2E2) = 0.001, the relative 
stresses in the extreme fibers for the elastic solution are also s = 0.001, and, in complete transformation, they 
are s = 0.00188, i.e., about twice the elastic stresses]. This phenomenon is related to the propagation of the 
front of completion of the transformation through the outer layers of the beam, after which the phase strain 
ceases to change and elastic deformation actually proceeds. In the problem of stress relaxation in the direct 
transformation in a beam with fixed curvature (see Fig. 2), overload of the outer layers was not observed, 
because the front of completion of the transformation travels very rapidly through the entire section at the 
very end of the cooling process. 

5. M a r t e n s i t e  I ne l a s t i c i t y  in a Ben t  Beam.  Let a beam in the austenite state be loaded by a 
monotonically increasing bending moment under isothermal conditions at T > M1. This can lead to the 
occurrence of martensite inelasticity [1, 2] in the beam, in which case the direct transformation proceeds as a 
result of change in stress rather than temperature. A description of martensite inelasticity using constitutive 
equations (1.2) and (1.4) for a uniform stressed state in a stretched beam is given in [6]. For a bent beam, 
this phenomenon can be described using the above-stated algorithm. 

It should be noted that  martensite inelasticity is intimately related to the effect of the acting stresses 
on the phase composition and, hence, can be described only in solution of coupled problems, for which it 
is necessary to set dT = 0 in (3.4). As a result, the curvature increment is determined from the formula 
dE = dM/(2bfl). 

The procedure for solution of the problem is similar to that described above. The only difference is that 
here in the initial stage at a given temperature T, we find the initial value of the moment M0 = (T-M1)J/(kh) 
at which the direct transformation begins in the extreme fiber of the section considered and we use the results 
of elastic solution for M = M0 as the initial values of curvature and stresses. Solution in increments is 
performed with a chosen step of the moment dM, beginning with M0. 

Figure 3 shows distribution curves of the relative stress s -'- alE2 over the beam section under an 
isothermal increase in the moment. The calculation is performed at t = -0.5. Curves 1-4 correspond to 
loading to the relative bending moments/z = 0.01, 0.002, 0.001, and 0.0006. Curve 4 corresponds to loading 
under which the transformation begins for the first time in the extreme fiber of the beam (therefore, the stress 
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distribution over the section is linear, as is typical of the elastic problem). The point of inflection on curve 3 
corresponds to the position of the front of the beginning of the transformation, and curve 2 corresponds to the 
maximum moment at which the transformation is first completed at the extreme fiber of the beam. At large 
values of the maximum moment, the curves of stress distribution over the section axe three-segment broken 
lines with two straight segments (in the elastic zone containing the neutral curve and in the zone adjacent 
to the fibers, in which the transformation is already completed) and a curvilineax segment in the zone of 
continuing transformation located between the above-mentioned zones. The slope of the straight segments 
da/dz in the zone of complete transformation increases with increase in the bending moment. The central 
part of the beam appears to be unloaded, and the extreme fibers are overstressed compared to the elastic 
solution. 

Figure 4 shows distribution curves over the section for the portion of the maxtensite phase q. Curves 
1-5 correspond to ~ = 0.01, 0.004, 0.002, 0.0015, and 0.001. In the problem considered, the fronts of both 
beginning and completion of the transformation move toward the neutral curve with increase in the bending 
moment. Here, however, at T > M2, the front of the beginning of the transformation never reaches the neutral 
curve, tending to it asymptotically as the bending moment increases indefinitely. 

If it is necessary to find the deflection of the beam W from the given distribution of the bending 
moment at small strain and deflection, the approximate expression for the curvature ~ (1.9) is represented in 
finite differences. As a result, using central finite differences, one obtains the following recursion relation for 
the deflection: 

W(x~+2) = ~[M(xi+l),T](Ax) 2 - W(xi) + 2W(zi+l), i = 1,2, . . .  ,n - 2. (5.1) 

Here the neutral axis of the beam is divided into equal segments of length Az by the points Zl, z2 , . . . ,  x, ,  the 
values of W(xl) and W(x2) are determined from the conditions of attachment of the left end of the beam, and 
the quantities f~[M(xi+,), T] axe found by the procedure described above. This procedure is used to determine 
the deflections of a cantilever beam clamped at one end and loaded by a transverse force at the other end. 

The problem was solved in two variants. In the first, the beam was cooled at a constant loading P 
to a certain temperature T. In the second variant, the load was increased from zero to P under isothermal 
conditions at T t> M1. It is established that in the case of maxtensite inelasticity, other conditions being equal 
(the same temperatures not exceeding M1 and the same maximum loading values), values of curvature and 
deflection larger than in the direct transformation at P -- const axe attained. At the same time, cooling the 
beam to a temperature T -- M2 under constant load, one can attain somewhat larger deflection values than 
those under the same maximum loading under isothermal conditions at T = M1. 

6. Solut ion of t he  P r o b l e m  of Bending  of a B e a m  wi th  Uni la te ra l  Coupl ing at  the  Right 
End. Solution of statically indeterminate problems is more difficult. Below we consider a coupled problem 
of cooling of a beam whose left end is clamped and whose right end in the austenite state is imparted (by 
means of a support) a deflection W0 that can increase but cannot decrease. The bending moment at the right 
end is equal to zero. If the deflection of the right end exceeds W0 (the plate separates from the support), the 
transverse force at the right end also vanishes. This problem in an uncoupled formulation was solved in [8]. 

Under cooling, phase deformation results from the direct transformation, and the transverse force 
acting on the beam decreases. Therefore, the distribution of the bending moment is not known beforehand 
and must be obtained by solution of the problem. To avoid use of the fourth-order bending equation, which 
involves numerical differentiation of the curvature defined in increments, one can use the fact that the problem 
in deflection increments is linear. Therefore, for a given small increment of the temperature dT, one can 
calculate the increment of the force at the right end dP for which zero increment of the deflection of the right 
end corresponds to the pair (dT, dP): 

d W ( x , , )  = O. (6.1) 

For this, Eq. (5.1) is written in increments: 

dW(xi+2) = d~[M(xi+l), T](Ax) 2 - dW(xi) + 2dW(xi+l). (6.2) 
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The quantity d3 is determined from (3.4) in the form 

d3(xi+l) = A(xi+z) dP + B(xi+l)  dT, 

where 

(6.3) 

1 L - z i + l  f2  
A(xi+l) = 2b fl  ' B(xi+l) = -~1"1 (6.4) 

(L is the beam length). In (6.4), in calculation of the integrals entering the functions f i  according to (3.4), 
the quantity z0 and also the functions in the integrands are taken for the section with the coordinate Xi+l. 
From the conditions of clamping of the left end, d W ( z l )  = dW(z2)  = 0. Substituting (6.3) into (6.2) yields 

dW(z i )  = (Ax)2(Di dR + Fi dT). 

H e r e  

i--1 i - - I  

Di = ~ _ , ( i - j ) A ( z i ) ;  F i =  ~ _ , ( i - j ) B ( z i ) .  
j=2 j=2 

As a result, the absence of constancy for the deflection of the right end (6.1) can be written in the form 

F. 
dR = - dT. (6.5) 

Dn 
Relation (6.5) yields the desired increment of the transverse force exerted on the beam by the support. 
Precisely this value is used for substitution into the right side of formula (6.3), which is used to determine 
the curvature increment. Further solution is performed by the procedure described above. 

In solution of this problem, it is found that the force P exerted on the beam by the support decreases on 
cooling and reaches a zero value at a certain temperature T*. On further cooling in the problem with bilateral 
attachment of the right end, the force P becomes negative and its absolute value increases. If the right end 
can move upward freely, on further cooling it separates from the support and its displacement increases with 
increase in temperature. This phenomenon was detected experimentally by Vitaikin et al. [12]. To describe 
the displacement of the beam under such conditions, in Eq. (6.3) at T > T*, one should set A(xi+l) = 0 for 
all i. Otherwise, solution is performed by the scheme described above. 

Figure 5 shows curves of the position of the neutral curve of a beam of t i tanium nickelide at Wo/h = 
0.133 and L/h  = 20. The relative longitudinal coordinate T I = x / L  is plotted on the abscissa, and the relative 
deflection w = W / h  is plotted on the ordinate. Curves 1 and 2 correspond to t = -0 .8  and 0.1 (the right 
end has not separated from the support). The moment of separation corresponds to t = t* = 0.17. Curves 
3 and 4 are calculated for t = 0.5 and 1. Figure 6 illustrates the motion of the boundary of the zone of 
the beginning of the transformation along the same beam. For illustration, the scale of the beam height is 
increased fourfold. An elastic region is located below the corresponding curves, and the transformation zone 
is located above them. Curves 1-8 correspond to t = -0 .8  -0.7,  -0.6,  -0.5, -0.4,  -0.3,  -0.2, and -0.1. At 
t/> 0, the transformation zone occupies the entire beam. 
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In solution of the same problem in an uncoupled formulation, the relative temperature that corresponds 
to the moment of separation is determined from formulas (2.11) and (2.12), i.e., it coincides with the value of 
t* in the problem of stress relaxation in a beam with a given curvature. 

From experimental data, Vitaikin et al. [12] established that the maximum deflection of the beam end 
in complete direct transformation W is proportional to the initially given deflection W0. Calculations show 
that, although the ratio W/Wo is not constant, it changes insignificantly with variation in W0 (when the 
value of W0 changes by a factor of 3, the value of W/Wo changes from 1.67 at Wo/h = 0.06667 to 1.66 at 
Wo/h = 0.2). 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01406). 
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